
AlloyDB Omni Configuration Guide

Table of contents

Table of contents 1
Configure AlloyDB Omni 3

Enable AlloyDB Omni to automatically start 3
Enable extensions on AlloyDB Omni 4

Configure Backups 5
Overview 5
Configure pgBackRest 5

Before you begin 5
File system paths 5

Configure pgBackRest with local backups 6
Configure the database for continuous backups 10

Configure backups for your clusters 12
Back up and restore data 12

Before you begin 12
Requirements 13

Prepare your environment 14
Verify your source backups 14
Prepare your target server 15
Restore on the target server 15
Verify the data restore 19

Advanced backup and recovery 20
Before you begin 20
Recovery scenarios 20

Point-in-time recovery (PITR) 22
Recover specific databases 27
Recover to a restore point 31
Recover to a specific log sequence number 35

High Availability and DR 39
What is database resilience? 39
How high availability works 40
High availability with Patroni, etcd and HAProxy 41

Before you begin 41
Installation 42

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Deploy the solution 43
Install a client on a machine in the same network 43

Test your high availability setup 45
Test your Patroni setup 45
Test your HAProxy setup 47
Test the automatic failover operation 48
Fallback considerations 51

Security and Compliance 52
Manage AlloyDB Omni database roles 52

About user roles in AlloyDB Omni 52
AlloyDB’s predefined PostgreSQL roles 52

Data Migration 53
PostgreSQL to AlloyDB Omni 53
Oracle to AlloyDB Omni 53

Observability 54
Observability Scripts 54
Observability Tools 58

Using Grafana, Prometheus, and Postgres Exporter 58
Installing Postgres Exporter 58
Installing Prometheus 60
Installing Grafana 62

Standard Addresses for Postgres Exporter, Prometheus, and Grafana 63
Load a Dashboard to Grafana 63

Create a data source 64
Create a dashboard 66

Perfsnap 70
Recommended extensions for observability 70

Columnar engine observability 70
General columnar engine observability scripts: 71

Index advisor 73
Manage your AlloyDB Omni configuration 73

Default extensions to use 73
Log location 73
Add extensions to AlloyDB Omni 74

Configure AlloyDB Omni

Enable AlloyDB Omni to automatically start

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

If you are using Docker, AlloyDB Omni can be con�gured to automatically restart by providing
Docker with a restart policy.  Add --restart RESTART_POLICY to the docker run
command, or update a running container's con�guration:

docker update --restart <RESTART_POLICY> <CONTAINER_NAME>

Replace the following:

<RESTART_POLICY> Docker suppo�s four resta� policy options:

● no: Do not resta� the container (default)
● on-failure[:max-retries]: Resta� the container if it exits due to an error.

The number of retries can be limited with the max-retries option.
● always: Always resta� the container if it stops.
● unless-stopped: Similar to always, except that the docker daemon doesn't

resta� the container if it was shut down when the daemon resta�s.

<CONTAINER_NAME>: The name to assign this new AlloyDB Omni container in your
host machine's container registry, for example, my-omni-1

Podman does not provide a restart policy option, but containers can be con�gured to restart
using systemd.  Follow these instructions to con�gure a systemd service to run AlloyDB
Omni:

1. Generate a systemd con�guration �le for the container. The command below
generates a con�guration �le in the working directory with a name of
container-$<CONTAINER_NAME>.service

podman generate systemd --new --files --name <CONTAINER_NAME>

Replace the following:

<CONTAINER_NAME>: The name to assign this new AlloyDB Omni container in your
host machine's container registry, for example, my-omni-1

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

2. Copy the con�guration �le to the /etc/systemd/system directory and reload the
services managed by systemd:

sudo cp -Z SYSTEMD_CONFIG_FILE /etc/systemd/system
sudo systemctl daemon-reload
sudo systemctl enable container-$<CONTAINER_NAME>.service

3. Start, stop, and check the status of the service using the commands below:

systemctl start container-$<CONTAINER_NAME>.service
systemctl stop container-$<CONTAINER_NAME>.service
systemctl status container-$<CONTAINER_NAME>.service

The systemd subsystem doesn't show an AlloyDB Omni instance that was manually started
with podman command as running. The instance must be started using systemd in order to be
managed by systemd.

Enable extensions on AlloyDB Omni
The list of extensions available in AlloyDB Omni is available in Support database extensions.
Although PostGIS and Orafce are not included with AlloyDB Omni, they can both be installed
by following instructions:

● Install PostGIS for AlloyDB Omni
● Install Orafce for AlloyDB Omni

Installed extensions are enabled using standard PostgreSQL CREATE EXTENSION statements
as detailed in Enable an extension.

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/reference/extensions
https://cloud.google.com/alloydb/docs/omni/install-postgis
https://cloud.google.com/alloydb/docs/omni/install-orafce
https://cloud.google.com/alloydb/docs/reference/extensions#enable
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Configure Backups

Overview
pgBackRest is the recommended backup manager for AlloyDB Omni. Unlike the native
PostgreSQL utilities pg_dump and pg_dumpall, which extracts database data logically,
pgBackRest performs physical database cluster backups.

pgBackRest can do the following:
● Perform full, incremental, or differential backups
● Write to local disk, remote disk, or cloud storage destinations
● Parallelize and encrypt backups
● Compression and checksums (done in-stream) options
● Automatic management and expiration of backups

The AlloyDB Omni Docker container includes the pgBackRest utility and therefore, pgBackRest
can be used to:

● Perform physical backups and restorations of your AlloyDB Omni database clusters.
● Build AlloyDB clone clusters–either to a current or specific point-in-time.
● Perform selective restores of only specific databases from within your AlloyDB Omni

database cluster.

Configure pgBackRest
Use the information in this section to configure pgBackRest.

Before you begin
Before con�guring AlloyDB Omni to work with pgBackRest, you need to have AlloyDB Omni
installed and running on a server that you control.

File system paths

When using pgBackRest with AlloyDB Omni, refer to �le system paths from the container's
perspective.
The pgBackRest so�ware included with AlloyDB Omni runs in the same Docker container as
AlloyDB Omni. Because of this, all of the �le system paths that you provide pgBackRest
through its con�guration �le or as command line arguments are locations on the container's
�le system, and not your host machine's �le system.

Did you find this document helpful? Please send us your feedback.

https://pgbackrest.org/
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Many of the commands and examples on this page refer to your data directory as
/var/lib/postgresql/data, regardless of the location of your data directory on your host
system. This is because AlloyDB Omni mounts your data directory to
/var/lib/postgresql/data on its containerized �le system. As a result, you can use the
data directory as a location to store pgBackRest con�guration and repositories without further
setup.

Note: You can replace /var/lib/postgresql/data with the path to the PGDATA directory
where your database cluster is stored.

If you want to con�gure the containerized pgBackRest to read from or write to directories on
your host machine's �le system outside of your AlloyDB Omni data directory, then you need to
make these directories available to the container.

Configure pgBackRest with local backups
Before running pgBackRest, configuration is required. The guide uses the following as an
example:

Create the user name postgres to run the Omni container:

sudo useradd --uid 2345 --user-group --no-create-home postgres

Configure the data and backup directories:

mkdir alloydb-data
mkdir alloydb-backup

sudo chown -R postgres:postgres alloydb-data/
sudo chmod 770 alloydb-data

sudo chown -R postgres:postgres alloydb-backup/
sudo chmod 770 alloydb-backup

Start the docker container:

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

sudo docker run --detach \
--name pg-service \

-e POSTGRES_PASSWORD=${YOUR_PASSWORD} \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v "$PWD/alloydb-data":/var/lib/postgresql/data \
-v "$PWD/alloydb-backup":/var/lib/postgresql/backup \
-p 5432:5432 \
-u 2345 \

google/alloydbomni

pgBackRest creates subdirectories for each backup taken and includes a plain-text manifest file.

pgBackRest uses the term stanza to refer to the configuration for a PostgreSQL database
cluster. The stanza name is arbitrary and doesn’t need to match the host server, PostgreSQL
cluster, or database name. The pgBackRest documentation suggests naming the stanza after
the cluster’s function. For this example, we will use the stanza name“omni. You can adjust the
stanza name to suit your environment.

The repository is where backups are written. pgBackRest supports writing to more than one
repository in a given stanza. Most configuration parameters related to repositories are indexed
with a numeric value, for example, repo1-. Parameters related to PostgreSQL clusters are also,
independently, indexed, for example, pg1-.

pgBackRest leverages a configuration file, called pgbackrest.conf, to hold global and
stanza-specific parameters.

Build and initialize a configuration file for backing up your AlloyDB Omni cluster using the
following commands from the AlloyDB Omni host server:

echo -e "
[global]

# Paths (all mandatory):
repo1-path=/var/lib/postgresql/backup/backups
spool-path=/var/lib/postgresql/backup

Did you find this document helpful? Please send us your feedback.

https://pgbackrest.org/configuration.html#section-general/option-stanza
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


lock-path=/var/lib/postgresql/backup

# Retention details:
repo1-retention-full=3
repo1-retention-full-type=count
repo1-retention-diff=16

# Force a checkpoint to start backup immediately:
start-fast=y

# Logging parameters:
log-path=/var/lib/postgresql/backup/backups
log-level-console=info
log-level-file=info

# Recommended ZSTD compression:
compress-type=zst

# Other performance parameters:
archive-async=y
archive-push-queue-max=1024MB
archive-get-queue-max=256MB
archive-missing-retry=y

[global:archive-push]
process-max=2

[global:archive-get]
process-max=2

[omni]
pg1-user=postgres
pg1-socket-path=/tmp
pg1-path=/var/lib/postgresql/data/pgdata
" | sudo -u postgres tee ~/alloydb-backup/pgbackrest.conf

#  Verify:
sudo ls -l ~/alloydb-backup/pgbackrest.conf
sudo cat ~/alloydb-backup/pgbackrest.conf

Some parameters are mandatory, but can be adjusted to meet your specific requirements if
needed, such as the following:

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

● repo1-path: the directory location where the backups are written to–a location visible to
both the host server and the Docker container is recommended. The default is
/var/lib/pgbackrest which is visible only inside of the container.

● log-path: if you want to write log files to a separate location–not intermixed with the
backups themselves–adjust this parameter. The default is /var/log/pgbackrest which is
visible only inside of the container.

● repo1-retention-full: the number of full backups to retain. The default (unset) causes a
warning.

● repo1-retention-full-type: whether the retention is measured by count or time period
(days).

● repo1-retention-diff: the number of differential backups to retain.

Other, non-critical but recommended parameter settings that are compatible with AlloyDB Omni
in the configuration file include the following:

● log-level-console: the level of logging written to the screen (STDOUT) when running
pgBackup commands. You can adjust this to meet your needs in the configuration file, or
override this value with the --log-level-console command line argument. The default is
warn.

● start-fast: forces a checkpoint to start the backups quickly. The default is n.
● archive-async: push WAL segment files asynchronously for performance. The default is

n.
● process-max: the maximum number of processes to use for compression and transfer.

Typically set to max_cpu/4 on a primary or max_cpu/2 on a standby cluster. The
default is 1.

● compress-type: compression algorithm to use. The default is gz.

These parameters can also be adjusted to meet your specific needs.

To change any parameters, edit the configuration file from the AlloyDB Omni host server:

sudo vi ~/alloydb-backup/pgbackrest.conf

Many other pgBackRest configuration parameters exist and can be adjusted. This
documentation covers only the parameters mandatory for the default AlloyDB Omni
configuration and some recommended parameter settings. Refer to the pgBackRest
Configuration Reference online documentation for the full list of configuration parameters and
adjust to meet your specific needs.

After configuring pgBackRest, the target repositories where backups are written to must be
initialized by creating the stanza–which uses the parameters as set in the configuration file.

Did you find this document helpful? Please send us your feedback.

https://pgbackrest.org/configuration.html#section-repository/option-repo-path
https://pgbackrest.org/configuration.html#section-log/option-log-path
https://pgbackrest.org/configuration.html#section-repository/option-repo-retention-full
https://pgbackrest.org/configuration.html#section-repository/option-repo-retention-full-type
https://pgbackrest.org/configuration.html#section-repository/option-repo-retention-diff
https://pgbackrest.org/configuration.html#section-log/option-log-level-console
https://pgbackrest.org/configuration.html#section-backup/option-start-fast
https://pgbackrest.org/configuration.html#section-archive/option-archive-async
https://pgbackrest.org/configuration.html#section-general/option-process-max
https://pgbackrest.org/configuration.html#section-general/option-compress-type
https://pgbackrest.org/configuration.html
https://pgbackrest.org/configuration.html
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Note: Since, within the Docker container, the pgBackRest configuration file is not in the default
location, the file’s location is provided as a command line argument.

Create the stanza using the stanza-create command:

docker exec pg-service pgbackrest --config-path=/var/lib/postgresql/backup
--stanza=omni stanza-create

Sample output:

$ docker exec pg-service pgbackrest --config-path=/var/lib/postgresql/backup
--stanza=omni stanza-create

2024-06-14 20:22:33.109 P00   INFO: stanza-create command begin 2.48:
--config-path=/var/lib/postgresql/backup --exec-id=218-6c78c96f
--lock-path=/var/lib/postgresql/backup --log-level-console=info
--log-level-file=info --log-path=/var/lib/postgresql/backup
--pg1-path=/var/lib/postgresql/data/pgdata --pg1-socket-path=/tmp
--pg1-user=postgres --repo1-path=/var/lib/postgresql/backup --stanza=omni
2024-06-14 20:22:33.714 P00   INFO: stanza-create for stanza 'omni' on repo1
2024-06-14 20:22:33.723 P00   INFO: stanza-create command end: completed
successfully (615ms)

Configure the database for continuous backups
To enable online, physical backups, some fundamental PostgreSQL parameters must be
configured in your AlloyDB Omni cluster.

Specifically:
● archive_command='pgbackrest --config-path=<location> --stanza=<name>

archive-push %p'
● archive_mode=on
● max_wal_senders=10
● wal_level='replica' (or 'logical')

Assuming a default AlloyDB Omni installation, only the archive_command and archive_mode
parameters must be added.  If you have adjusted the max_wal_senders or wal_level

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Unset

Unset

parameter yourself, you may need to also update those, or revert them back to the AlloyDB
Omni defaults.

The PostgreSQL parameters can be adjusted using:

docker exec pg-service psql -h localhost -U postgres \
-c "ALTER SYSTEM SET archive_command='pgbackrest

--config-path=/var/lib/postgresql/backup --stanza=omni archive-push %p';" \
-c "ALTER SYSTEM SET archive_mode=on;"

After changing the host-based authentication, restart your AlloyDB Omni cluster:

docker restart pg-service

After restarting, confirm that the necessary parameters are all set appropriately using:

docker exec pg-service psql -h localhost -U postgres -c "
SELECT name, setting
FROM pg_catalog.pg_settings
WHERE name IN ('archive_command',

'archive_mode',
'max_wal_senders',
'wal_level')

ORDER BY name;
"

Sample output:

$ docker exec pg-service psql -h localhost -U postgres -c "
> SELECT name, setting
> FROM pg_catalog.pg_settings
> WHERE name IN ('archive_command',
> 'archive_mode',
> 'max_wal_senders',

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


> 'wal_level')
> ORDER BY name;
> "

name       |                                      setting
-----------------+-------------------------------------------------------------
----------------------
archive_command | pgbackrest --config-path=/var/lib/postgresql/backup
--stanza=omni archive-push %p
archive_mode    | on
max_wal_senders | 10
wal_level       | replica
(4 rows)

At this point, your AlloyDB Omni cluster is ready to be used with pgBackRest.

Configure backups for your clusters
For information on setting up pgbackrest, see Set up pgbackrest.

Back up and restore data

Before you begin
Before following these steps, ensure that you have the following:

● A new server with AlloyDB Omni installed. This server is referred to as the target.  A
clone is created by restoring an existing AlloyDB Omni database cluster onto the target
server.

● pgBackRest configured against the AlloyDB Omni database cluster on the target server.
● Sufficient disk space on the target server to hold the restored AlloyDB Omni database

cluster and the associated backups.
● Access to your primary AlloyDB Omni database cluster and existing pgBackRest

backups, which is referred to as the source.
● An established and secured network between the servers.

Requirements
Ensure that you have the same major version of PostgreSQL and pgBackRest installed on both
your source and target servers. Google might occasionally update the AlloyDB Omni version of
either, or both, in the latest Docker image provided in the Google Container Registry (GCR). If

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/omni/set-up-pgbackrest
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Unset

your target server was provisioned at a later date than the source server or the other way
around, it is possible that their versions differ.

Check on your version of PostgreSQL:

docker exec CONTAINER_NAME psql -h localhost -U postgres -c "SELECT version();"

Check on the version of pgBackRest included in the AlloyDB Omni Docker container:

docker exec CONTAINER_NAME pgbackrest version

Sample outputs:

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -c "SELECT
version();"

version
-------------------------------------------------------------------------------
----------
PostgreSQL 15.5 on x86_64-pc-linux-gnu, compiled by Debian clang version
12.0.1, 64-bit
(1 row)

If your target server has a different version of PostgreSQL or pgBackRest or both then you need
to provision a new target server with a matching version. If this is not possible, then you need to
use an alternative method, such as the PostgreSQL included pg_dump or pg_dumpall utilities to
copy your databases across versions. For more information, see Export a DMP file.

Prepare your environment
AlloyDB Omni pgBackRest backup files are owned by the postgres OS user and must be copied
from the source server to the target. Therefore, ssh connectivity between the two servers,
usually as the postgres user, must be established.

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/export-dmp-file
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Unset

Unset

Assuming that a passwordless ssh login has been established, verify if a passwordless ssh
login has been established using a simple test command from your AlloyDB Omni target host
such as:

sudo -u postgres ssh postgres@${SOURCE_SERVER_IP} whoami

Verify your source backups
If existing backups of your AlloyDB Omni source database cluster are already available, taking a
new backup is not necessary. pgBackRest restores the most recent backup and applies all
available WAL segment file backups to make the cloned cluster on the target server as current
as possible.

If needed, you can make a new full backup of your source AlloyDB Omni cluster:

docker exec pg-service pgbackrest --config-path=/var/lib/postgresql/backup
--stanza=omni --type=full backup

List and verify the backups:

docker exec pg-service pgbackrest --config-path=/var/lib/postgresql/backup
--stanza=omni info

To ensure that the most recent transactions are included, we recommend performing a WAL
segment file log switch:

docker exec pg-service psql -h localhost -U postgres -c "SELECT
pg_switch_wal();"

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Unset

Unset

Prepare your target server
Copy the pgBackRest configuration file from your source server:

sudo -u postgres scp
${SOURCE_SERVER_IP}:/home/$USER/alloydb-backup/pgbackrest.conf
/home/$USER/alloydb-backup/

If not already installed, install rsync using your normal processes for installing software from
your package manager. Copy the pgBackRest repository (directory) and its contents from the
source server–using the Linux rsync utility is recommended:

sudo -u postgres rsync -avzhrP
${SOURCE_SERVER_IP}:/home/$USER/alloydb-backup/backups
/home/$USER/alloydb-backup/

Restore on the target server
Before restoring, list the current databases in your target AlloyDB Omni cluster–this should
show the default list of databases without any of your application data.

Warning: If you see application data, stop and check that you are working against the correct
system.

The AlloyDB Omni Docker container, and hence PostgreSQL cluster, must be up and running
on the target server at this point. List the databases:

docker exec CONTAINER_NAME psql -h localhost -U postgres -c "\l"

Sample output showing a default (initialized) AlloyDB Omni cluster:

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -c "\l"

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

List of databases
Name | Owner | Encoding | Collate | Ctype | ICU Locale |

Locale Provider | Access privileges
-----------------+--------------+----------+---------+-------+------------+----
-------------+--------------------------------
alloydbadmin | alloydbadmin | UTF8 | C | C | und-x-icu | icu
|
alloydbmetadata | alloydbadmin | UTF8 | C | C | und-x-icu | icu
| alloydbadmin=CTc/alloydbadmin +

| | | | | |
| alloydbmetadata=c/alloydbadmin
postgres | postgres | UTF8 | C | C | und-x-icu | icu
|
template0 | postgres | UTF8 | C | C | und-x-icu | icu
| =c/postgres +

| | | | | |
| postgres=CTc/postgres
template1 | postgres | UTF8 | C | C | und-x-icu | icu
| =c/postgres +

| | | | | |
| postgres=CTc/postgres
(5 rows)

Use pgBackRest to restore the database into a new location called data-RESTORED:

docker exec CONTAINER_NAME pgbackrest --config-path=/var/lib/postgresql/backup
--pg1-path=/var/lib/postgresql/data/data-RESTORED --stanza=omni restore

Sample output:

$ docker exec CONTAINER_NAME pgbackrest
--config-path=/var/lib/postgresql/backup
--pg1-path=/var/lib/postgresql/data/data-RESTORED --stanza=omni restore

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

2024-06-14 20:53:09.641 P00   INFO: restore command begin 2.48:
--config-path=/var/lib/postgresql/backup --exec-id=270-28543cdb
--lock-path=/var/lib/postgresql/data --log-level-console=info
--log-level-file=info --log-path=/var/lib/postgresql/data
--pg1-path=/var/lib/postgresql/data/data-RESTORED
--repo1-path=/var/lib/postgresql/data --spool-path=/var/lib/postgresql/data
--stanza=omni
2024-06-14 20:53:09.651 P00   INFO: repo1: restore backup set
20240614-202802F_20240614-202846D, recovery will start at 2024-06-14 20:28:46
2024-06-14 20:53:09.651 P00   INFO: remap data directory to
'/var/lib/postgresql/data/data-RESTORED'
WARN: unknown user in backup manifest mapped to current user
2024-06-14 20:53:13.192 P00   INFO: write updated
/var/lib/postgresql/data/data-RESTORED/postgresql.auto.conf
2024-06-14 20:53:13.196 P00   INFO: restore global/pg_control (performed last
to ensure aborted restores cannot be started)
2024-06-14 20:53:13.197 P00   INFO: restore size = 69MB, file total = 2194
2024-06-14 20:53:13.197 P00   INFO: restore command end: completed successfully
(3557ms)

Stop the target AlloyDB Omni database server:

docker stop pg-service

We recommend archiving the existing data directory by renaming it instead of removing it as a
precautionary measure. Archive the existing data directory by renaming it, then move the
restored data into the original location:

sudo mv ~/alloydb-data/pgdata ~/alloydb-data/pgdata-OLD

sudo mv ~/alloydb-data/data-RESTORED ~/alloydb-data/pgdata

The pgBackRest restore operation adds recovery parameters to the
postgresql.auto.conf file and creates a recovery.signal file.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Unset

Unset

These parameters reference the restored directory name. Now that the restored data is back
into a directory called pgdata, the postgresql.auto.conf file must be updated accordingly:

sudo sed -i 's|data-RESTORED|pgdata|'
~/alloydb-data/pgdata/postgresql.auto.conf

Restart the AlloyDB cluster. PostgreSQL will recover the database files and apply a redo of the
logs for recovery automatically.

docker restart CONTAINER_NAME

Check for confirmation that the recovery is complete.

sudo docker logs CONTAINER_NAME |& grep -A4 'archive recovery complete'

Sample output:

$ sudo docker logs CONTAINER_NAME |& grep -A4 'archive recovery complete'

2024-06-14 21:59:36.628 UTC [16] LOG:  [xlog.c:6325]  archive recovery complete
2024-06-14 21:59:36.628 UTC [16] LOG:  [xlog.c:6442]  Setting InRecovery=false
- PG ready for connections
2024-06-14 21:59:36.629 UTC [14] LOG:  [xlog.c:7125]  checkpoint starting:
end-of-recovery immediate wait
2024-06-14 21:59:36.808 UTC [14] LOG:  [xlog.c:7278]  checkpoint complete:
wrote 3 buffers (0.0%); 0 WAL file(s) added, 0 removed, 1 recycled; write=0.171
s, sync=0.002 s, total=0.180 s; sync files=2, longest=0.001 s, average=0.001 s;
distance=16384 kB, estimate=16384 kB
2024-06-14 21:59:36.809 UTC [16] LOG:  [xlog.c:6600]  StartupXLOG Finished

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Verify the data restore
After restoring your AlloyDB Omni cluster, verify that you see the expected data in your target
cluster. For example, check that your application databases are now present:

docker exec CONTAINER_NAME psql -h localhost -U postgres -c "\l"

Sample output showing that the db1 database is present:

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -c "\l"
List of databases

Name | Owner | Encoding | Collate | Ctype | ICU Locale |
Locale Provider | Access privileges
-----------------+--------------+----------+---------+-------+------------+----
-------------+--------------------------------
alloydbadmin | alloydbadmin | UTF8 | C | C | und-x-icu | icu
|
alloydbmetadata | alloydbadmin | UTF8 | C | C | und-x-icu | icu
| alloydbadmin=CTc/alloydbadmin +

| | | | | |
| alloydbmetadata=c/alloydbadmin
db1 | postgres | UTF8 | C | C | und-x-icu | icu
|
postgres | postgres | UTF8 | C | C | und-x-icu | icu
|
template0 | postgres | UTF8 | C | C | und-x-icu | icu
| =c/postgres +

| | | | | |
| postgres=CTc/postgres
template1 | postgres | UTF8 | C | C | und-x-icu | icu
| =c/postgres +

| | | | | |
| postgres=CTc/postgres
(6 rows)

If needed, check the command entered and remove the archived datafiles:

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

sudo rm -rf ~/alloydb-data/pgdata-OLD

If required, start performing, and optionally schedule, pgBackRest backups of your restored
target AlloyDB Omni cluster. The stanza does not need to be re-created–pgBackRest can start
working against the recovered database and the copied stanza right away.

Advanced backup and recovery

Before you begin
You can familiarize yourself with the basic process for performing recoveries of your AlloyDB
Omni database cluster to a secondary server using pgBackRest with the Cloning your AlloyDB
Omni database cluster guide. Advanced recovery scenarios are all based on the same general
steps, and bring in the same AlloyDB Omni specific recovery procedure differences and
uniqueness, as the normal cloning scenario.

Ensure that you have the following:
● A new server with AlloyDB Omni installed. This server is referred to as the target.
● pgBackRest configured against your new AlloyDB Omni database cluster on the target

server. For more information, see Configuring backups for use with AlloyDB Omni.
● Sufficient disk space on the target server to hold the restored AlloyDB Omni database

cluster and the associated backups.
● Access to your primary AlloyDB Omni database cluster and existing pgBackRest

backups. The AlloyDB Omni database cluster will be referred to as the “source”.
● An established and secured network between the servers.
● The ability to copy backup files and directories from the source system to the target. For

example, passwordless ssh connectivity for the postgres operating system user.

Recovery scenarios
This section describes the process for performing more advanced, and less typical recovery
scenarios of your AlloyDB database cluster using pgBackRest.

Specifically:
● Performing a point-in-time recovery (PITR).
● Restoration of specific databases only.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/document/d/19BXkruGVBmbTUWWGUlEwkelRvrJFPDQP9kEPASw02io
https://docs.google.com/document/d/19BXkruGVBmbTUWWGUlEwkelRvrJFPDQP9kEPASw02io
https://docs.google.com/document/d/18UxIzoOhUrlqJVgPQDsPjc1nKJloSujsyZh4qttA4mw
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Unset

● Recovering to a manually-created restore point.
● Recovering to a specific LSN (Log Sequence Number).

Before beginning any recovery, ensure that you have at least one backup of your source
AlloyDB Omni database cluster by using pgBackRest with the info command:

docker exec pg-service pgbackrest --config-path=/var/lib/postgresql/backup
--stanza=omni info

Sample output:

$ docker exec pg-service pgbackrest --config-path=/var/lib/postgresql/backup
--stanza=omni info

stanza: omni
status: ok
cipher: none
db (current)

wal archive min/max (15):
000000010000000000000002/000000010000000000000005

full backup: 20240614-220839F
timestamp start/stop: 2024-06-14 22:08:39+00 / 2024-06-14

22:08:43+00
wal start/stop: 000000010000000000000005 / 000000010000000000000005
database size: 70.2MB, database backup size: 70.2MB
repo1: backup set size: 6.5MB, backup size: 6.5MB

This document will describe the process for performing more advanced, and less typical
recovery scenarios of your AlloyDB database cluster using pgBackRest.

Specifically:
Performing a point-in-time recovery (PITR).
Restoration of specific databases only.
Recovering to a manually-created “restore point”.
Recovering to a specific LSN (Log Sequence Number).

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Before beginning any recovery, ensure that you have at least one backup of your source
AlloyDB Omni database cluster by using pgBackRest with the info command:

docker exec pg-service pgbackrest --config-path=/var/lib/postgresql/backup
--stanza=omni info

Sample output:

$ docker exec pg-service pgbackrest --config-path=/var/lib/postgresql/backup
--stanza=omni info

stanza: omni
status: ok
cipher: none
db (current)

wal archive min/max (15):
000000010000000000000002/000000010000000000000005

full backup: 20240614-220839F
timestamp start/stop: 2024-06-14 22:08:39+00 / 2024-06-14

22:08:43+00
wal start/stop: 000000010000000000000005 / 000000010000000000000005
database size: 70.2MB, database backup size: 70.2MB
repo1: backup set size: 6.5MB, backup size: 6.5MB

Point-in-time recovery (PITR)
A common scenario involves restoring a database onto a secondary or recovery server to a
specific point in time. For example, to view or retrieve data from before a user-introduced issue,
data corruption, or data loss.

Restoring your source AlloyDB Omni database cluster to a specific point in time on the target
server is straightforward when using pgBackRest and simply involves including the --type and
--target arguments.

For example, suppose we leverage the guestbook sample database. In that case, we can insert
some rows in the AlloyDB Omni source database and then simulate a failure in the form of an
accidental table truncation:

Did you find this document helpful? Please send us your feedback.

https://pgbackrest.org/1/command.html#command-restore/category-command/option-type
https://pgbackrest.org/1/command.html#command-restore/category-command/option-target
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

CREATE DATABASE guestbook;
\c guestbook

--  Create the sample table:
CREATE TABLE entries (guestName VARCHAR(255), content VARCHAR(255),

entryID SERIAL PRIMARY KEY);

--  Insert some test data:
INSERT INTO entries (guestName, content) values ('first
guest',transaction_timestamp());
SELECT pg_sleep(floor(random()*10)::int);

INSERT INTO entries (guestName, content) values ('second
guest',transaction_timestamp());
SELECT pg_sleep(floor(random()*10)::int);

INSERT INTO entries (guestName, content) values ('third
guest',transaction_timestamp());
--Last sleep to ensure there is some time between the last insert and the
truncate
SELECT pg_sleep(floor(random()*10)::int);

--  Verify the test data:
SELECT * FROM entries;

--  Introduce a failure
TRUNCATE TABLE entries;
SELECT transaction_timestamp();

SELECT * FROM entries;

Sample output:

postgres=# \c guestbook
You are now connected to database "guestbook" as user "postgres".
guestbook=#
guestbook=# -- Create the sample table:
guestbook=# CREATE TABLE entries (guestName VARCHAR(255), content VARCHAR(255),
guestbook(# entryID SERIAL PRIMARY KEY);
CREATE TABLE

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


guestbook=#
guestbook=# -- Insert some test data:
guestbook=# INSERT INTO entries (guestName, content) values ('first
guest',transaction_timestamp());
INSERT 0 1
guestbook=# SELECT pg_sleep(floor(random()*10)::int);
pg_sleep
----------

(1 row)
guestbook=#
guestbook=# INSERT INTO entries (guestName, content) values ('second
guest',transaction_timestamp());
INSERT 0 1
guestbook=# SELECT pg_sleep(floor(random()*10)::int);
pg_sleep
----------

(1 row)
guestbook=#
guestbook=# INSERT INTO entries (guestName, content) values ('third
guest',transaction_timestamp());
INSERT 0 1
guestbook=# --Last sleep to ensure there is some time between the last insert
and the truncate
guestbook=# SELECT pg_sleep(floor(random()*10)::int);
pg_sleep
----------

(1 row)
guestbook=#
guestbook=# -- Verify the test data:
guestbook=# SELECT * FROM entries;
guestname | content | entryid

--------------+-------------------------------+---------
first guest | 2024-06-03 22:31:46.900483+00 | 1
second guest | 2024-06-03 22:31:46.902606+00 | 2
third guest | 2024-06-03 22:31:53.938599+00 | 3
(3 rows)
guestbook=#
guestbook=# -- Introduce a failure
guestbook=# TRUNCATE TABLE entries;
TRUNCATE TABLE
guestbook=# SELECT transaction_timestamp();

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

transaction_timestamp
-------------------------------
2024-06-03 22:31:59.961435+00
(1 row)
guestbook=#
guestbook=# SELECT * FROM entries;
guestname | content | entryid
-----------+---------+---------
(0 rows)

In this example, the timestamps show that the time of truncation of the table is somewhere
between 22:31:54 and 22:31:59, so we are choosing 22:31:55. In a real world scenario things
might not be as clear, so you might need to look at more data and log files to determine the
correct date and time to use.

To ensure that all transactions are pushed to the pgBackRest backup repository, perform a log
switch against your source AlloyDB Omni database cluster::

docker exec CONTAINER_NAME psql -h localhost -U postgres -c "SELECT
pg_switch_wal();"

On your target server, follow the instructions in Cloning your AlloyDB Omni database cluster:
1. Prepare your target AlloyDB Omni database cluster.
2. Copy your pgBackRest configuration file from the source system to the target system.
3. Copy your pgBackRest backup repository (directory) from the source system to the

target.

Stop before executing the pgBackRest restore command.

Adjust the restore command to include the --type and --target options and include the
desired restore date and time, for example:

docker exec CONTAINER_NAME pgbackrest \
--config-path=/var/lib/postgresql/backup \
--pg1-path=/var/lib/postgresql/data/data-RESTORED \
--stanza=omni \

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/document/d/19BXkruGVBmbTUWWGUlEwkelRvrJFPDQP9kEPASw02io
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

--type=time \
--target="2024-06-03 22:31:55" \
restore

Complete the remaining steps from Cloning your AlloyDB Omni database cluster, including:

1. Stopping the target AlloyDB Omni database cluster.
2. Renaming data directories on the target server.
3. Updating the postgresql.auto.conf file on the target server. The pgBackRest

automatically adds the recovery_target_time parameter to that file; there is no
need to modify or remove this entry.

4. Re-starting the target AlloyDB Omni database cluster.

Check that the recovery completed as expected in the PostgreSQL log file for your AlloyDB
Omni cluster:

sudo docker logs CONTAINER_NAME |& grep -A4 'recovery stopping before'

Sample output:

$ sudo docker logs CONTAINER_NAME |& grep -A4 'recovery stopping before'

2024-06-03 22:40:06.264 UTC [16] LOG: [xlogrecovery.c:3178] recovery stopping
before commit of transaction 912, time 2024-06-03 22:31:59.960505+00
2024-06-03 22:40:06.264 UTC [16] LOG: [xlogrecovery.c:3411] pausing at the
end of recovery
2024-06-03 22:40:06.264 UTC [16] HINT: Execute pg_wal_replay_resume() to
promote.
2024-06-03 22:40:16.485 UTC [17] LOG: [g_memory.c:48] Memory worker finished
processing successfully

At this point, you can open your database in read-write mode and verify that the data was
restored to the correct time:

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/document/d/19BXkruGVBmbTUWWGUlEwkelRvrJFPDQP9kEPASw02io
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

docker exec CONTAINER_NAME psql -h localhost -U postgres -c "SELECT
pg_wal_replay_resume();"

docker exec CONTAINER_NAME psql -h localhost -U postgres -d guestbook -c
"SELECT * FROM entries;"

Sample output:

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -c "SELECT
pg_wal_replay_resume();"

pg_wal_replay_resume
----------------------

(1 row)

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -d guestbook -c
"SELECT * FROM entries;"

guestname | content | entryid
--------------+-------------------------------+---------
first guest | 2024-06-03 22:31:46.900483+00 | 1
second guest | 2024-06-03 22:31:46.902606+00 | 2
third guest | 2024-06-03 22:31:53.938599+00 | 3
(3 rows)

Recover specific databases
When you just want to extract a specific table or set of tables, you don't need to restore the
entire database cluster. Restoring the entire database cluster can use up excessive amounts of
disk space on the recovery server and take more time to recover the lost data. When extracting
specific tables or sets of tables, we recommend just restoring a specific database from the
cluster instead.

For example, your AlloyDB Omni source database cluster may have several databases but you
may only need to restore the guestbook database:

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

$ docker exec -it CONTAINER_NAME psql -h localhost -U postgres \
-c "SELECT datname name, pg_database_size(datname) size FROM pg_database;"

name | size
-----------------+----------
postgres | 14718639
alloydbadmin | 14169775
template1 | 9273859
template0 | 9273859
db1 | 10548911
alloydbmetadata | 13227695
guestbook | 10434223
(7 rows)

In this example, guestbook is comparatively small so excluding the other databases from the
restore operation saves time and disk space.

As the online pgBackRest Command Reference states:

“... Databases not specifically included will be restored as sparse, zeroed files to save
space but still allow PostgreSQL to perform recovery. After recovery, the databases that
were not included will not be accessible but can be removed with the drop database
command.

NOTE: built-in databases (template0, template1, and postgres) are always restored
unless specifically excluded.

The --db-include option can be passed multiple times to specify more than one
database to include.”

To restore only a subset of databases into your target AlloyDB Omni database cluster, use
--db-include option.

On your target AlloyDB Omni database cluster, follow all of the steps in Cloning your AlloyDB
Omni database cluster, but stop before running the pgBackRest restore command. Adjust the
restore command to include the --db-include option for the alloydbadmin database and
any other databases you wish to restore.

Warning: The internal alloydbadmin database must always be restored as it has required
metadata to make the database work properly.

Did you find this document helpful? Please send us your feedback.

https://pgbackrest.org/command.html#command-restore
https://docs.google.com/document/d/19BXkruGVBmbTUWWGUlEwkelRvrJFPDQP9kEPASw02io
https://docs.google.com/document/d/19BXkruGVBmbTUWWGUlEwkelRvrJFPDQP9kEPASw02io
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Unset

For example:

docker exec pg-service pgbackrest \
--config-path=/var/lib/postgresql/backup \
--pg1-path=/var/lib/postgresql/data/data-RESTORED \
--stanza=omni \
--db-include=alloydbadmin \
--db-include=guestbook \
restore

Continue with the remaining recovery steps as documented.

Errors for the non-recovered databases in the PostgreSQL log are expected. Multiple lines of
errors such as the following are expected:

2024-06-03 23:24:27.749 UTC [72] FATAL: [relmapper.c:841] relation mapping
file "base/16719/pg_filenode.map" contains invalid data

However, the restore should complete regardless.

Listing the databases shows that the PostgreSQL catalog still has records for all databases,
including those that were not recovered:

$ docker exec -it CONTAINER_NAME psql -h localhost -U postgres -c "\l"
List of databases

Name | Owner | Encoding | Collate | Ctype | ICU Locale |
Locale Provider | Access privileges
-----------------+--------------+----------+---------+-------+------------+----
-------------+--------------------------------
alloydbadmin | alloydbadmin | UTF8 | C | C | und-x-icu | icu
|
alloydbmetadata | alloydbadmin | UTF8 | C | C | und-x-icu | icu
| alloydbadmin=CTc/alloydbadmin +

| | | | | |
| alloydbmetadata=c/alloydbadmin
db1 | postgres | UTF8 | C | C | und-x-icu | icu
|

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

guestbook | postgres | UTF8 | C | C | und-x-icu | icu
|
postgres | postgres | UTF8 | C | C | und-x-icu | icu
|
template0 | postgres | UTF8 | C | C | und-x-icu | icu
| =c/postgres +

| | | | | |
| postgres=CTc/postgres
template1 | postgres | UTF8 | C | C | und-x-icu | icu
| =c/postgres +

| | | | | |
| postgres=CTc/postgres
(7 rows)

If you try to use any of the databases that were not actually recovered, an expected error is
produced:

$ docker exec -it CONTAINER_NAME psql -h localhost -U postgres -d db1
psql: error: connection to server at "localhost" (::1), port 5432 failed:
FATAL: relation mapping file "base/29305/pg_filenode.map" contains invalid
data

Drop the non-recovered databases and clean the PostgreSQL catalog, for example:

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -c "DROP DATABASE
db1;"
DROP DATABASE

Repeat the dropping of non-recovered databases and cleaning the PostgreSQL catalog for all
other non-recovered databases.

The reverse of the restore strategy, which uses the --db-include option, is possible using the
--db-exclude option. Use whichever option is more applicable for your recovery scenario,
while ensuring that the alloydbadmin is restored.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Unset

Recover to a restore point
Sometimes backups are made before significant database changes–such as major application
changes or upgrades for example–or after an upgrade. You may manually create the restore
point before major changes for reliability.

pgBackRest implicitly creates and uses PostgreSQL restore points. Restore points are created
using the pg_create_restore_point function to create a marker in the WAL stream.

Sometimes administrators or utilities create their own restore points explicitly and without
creating a pgBackRest backup.

pgBackRest supports restoring to an explicitly created restore point but does require you to
specify the base backup to use. If you do not specify a base backup to use, the latest backup is
used; which might be from a point in time after the desired restore point.

To test the recovery to a restore point, in your source AlloyDB Omni database cluster, create
some new data prior to creating a restore point marker:

docker exec CONTAINER_NAME psql -h localhost -U postgres -d guestbook -c
"INSERT INTO entries (guestName, content) values ('fourth guest','PRIOR TO APP
UPGRADE');"

Manually create a restore point:

docker exec CONTAINER_NAME psql -h localhost -U postgres -c "SELECT
pg_create_restore_point('BEFORE_APPLICATION_UPDATE');"

Sample output:

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -c "SELECT
pg_create_restore_point('BEFORE_APPLICATION_UPDATE');"

pg_create_restore_point
-------------------------
0/F0004A0

Did you find this document helpful? Please send us your feedback.

https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-ADMIN-BACKUP
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Unset

(1 row)

To check that the restore point was successfully created, search the PostgreSQL log file:

$ sudo docker logs CONTAINER_NAME |& grep 'restore point'

2024-06-03 20:12:18.029 UTC [55] LOG: [xlog.c:8642] restore point "pgBackRest
Archive Check" created at 0/384B088
2024-06-03 20:18:47.633 UTC [143] LOG: [xlog.c:8642] restore point
"pgBackRest Archive Check" created at 0/6000140
2024-06-03 23:31:56.288 UTC [1144] LOG: [xlog.c:8642] restore point
"BEFORE_APPLICATION_UPDATE" created at 0/F0004A0

Create some post-restore-point data:

docker exec pCONTAINER_NAME psql -h localhost -U postgres -d guestbook \
-c "INSERT INTO entries (guestName, content) values ('fifth guest','AFTER

FAILED APP UPGRADE');" \
-c "SELECT pg_switch_wal();" \
-c "SELECT * FROM entries;"

Sample output:

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -d guestbook \
> -c "INSERT INTO entries (guestName, content) values ('fifth guest','AFTER
FAILED APP UPGRADE');" \
> -c "SELECT pg_switch_wal();" \
> -c "SELECT * FROM entries;"

INSERT 0 1
pg_switch_wal
---------------
0/F0005C0
(1 row)

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

guestname | content | entryid
--------------+-------------------------------+---------
first guest | 2024-06-03 22:48:14.988387+00 | 4
second guest | 2024-06-03 22:48:21.762659+00 | 5
third guest | 2024-06-03 22:48:27.48224+00 | 6
fourth guest | PRIOR TO APP UPGRADE | 7
fifth guest | AFTER FAILED APP UPGRADE | 8
(5 rows)

You can then restore your target AlloyDB Omni database cluster to the specific restore point
using the --type and --target options.

IMPORTANT: This combination of options usually tries to use the latest full backup as the
recovery starting point which might be from a later point in time. It is usually necessary to also
specify the backup set using the --set option; use the most recent full backup from before your
restore point.

Obtain the backup set name from your source AlloyDB Omni cluster using the info command.
For example:

$ docker exec CONTAINER_NAME pgbackrest
--config-path=/var/lib/postgresql/backup
--stanza=omni info
stanza: omni

status: ok
cipher: none
db (current)

wal archive min/max (15):
000000010000000000000003/00000001000000000000000A

full backup: 20240603-201827F
timestamp start/stop: 2024-06-03 20:18:27+00 / 2024-06-03

20:18:32+00
wal start/stop: 000000010000000000000005 / 000000010000000000000005
database size: 68.1MB, database backup size: 68.1MB
repo1: backup set size: 6.5MB, backup size: 6.5MB

Follow all of the other steps from Cloning your AlloyDB Omni database cluster, but stop before
running the pgBackRest restore command.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/document/d/19BXkruGVBmbTUWWGUlEwkelRvrJFPDQP9kEPASw02io
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Unset

In your target AlloyDB Omni environment, adjust the restore command to include the --set
option and the desired backup set name. Also add the --type and --target options:

docker exec CONTAINER_NAME pgbackrest \
--config-path=/var/lib/postgresql/backup \
--pg1-path=/var/lib/postgresql/data/data-RESTORED \
--stanza=omni \
--set 20240603-201827F \
--type=name \
--target=BEFORE_APPLICATION_UPDATE \
restore

Continue with the remaining restoration steps as documented.

After restarting the AlloyDB Omni cluster, check that the recovery completed in the PostgreSQL
log file for your AlloyDB Omni cluster:

sudo docker logs CONTAINER_NAME |& grep -A4 'recovery stopping'

Sample output:

$ sudo docker logs CONTAINER_NAME |& grep -A4 'recovery stopping'

2024-06-04 18:14:20.056 UTC [16] LOG: [xlogrecovery.c:3238] recovery stopping
at restore point "BEFORE_APPLICATION_UPDATE", time 2024-06-03 23:31:56.28848+00
2024-06-04 18:14:20.056 UTC [16] LOG: [xlogrecovery.c:3411] pausing at the
end of recovery
2024-06-04 18:14:20.056 UTC [16] HINT: Execute pg_wal_replay_resume() to
promote.
2024-06-04 18:14:30.643 UTC [17] LOG: [g_memory.c:48] Memory worker finished
processing successfully

You can promote your database and verify that the data was restored to the correct time:

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

docker exec CONTAINER_NAME psql -h localhost -U postgres -c "SELECT
pg_wal_replay_resume();"

docker exec CONTAINER_NAME psql -h localhost -U postgres -d guestbook -c
"SELECT * FROM entries;"

Sample output:

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -c "SELECT
pg_wal_replay_resume();"

pg_wal_replay_resume
----------------------

(1 row)

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -d guestbook -c
"SELECT * FROM entries;"

guestname | content | entryid
--------------+-------------------------------+---------
first guest | 2024-06-03 22:48:14.988387+00 | 4
second guest | 2024-06-03 22:48:21.762659+00 | 5
third guest | 2024-06-03 22:48:27.48224+00 | 6
fourth guest | PRIOR TO APP UPGRADE | 7
(4 rows)

Recover to a specific log sequence number
Sometimes a restoration to a specific LSN (log sequence number) is necessary. For example,
an external system, a log file, or some other process might indicate the LSN when a failure
occurs. The actual LSN number might be specified instead of the desired restore date, time, or
backup set name.

Restoring your AlloyDB Omni database cluster to a specific LSN is almost identical to the
process of restoring to a calendar date and time, but instead uses the LSN value.

To test, determine the current WAL LSN value from your source AlloyDB Omni database cluster:

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Unset

SELECT pg_current_wal_lsn();

Perform a transaction to simulate corrupting some table data:

docker exec CONTAINER_NAME psql -h localhost -U postgres -d guestbook \
-c "SELECT * FROM entries;" \
-c "SELECT pg_current_wal_lsn();" \
-c "UPDATE entries SET content='A';" \
-c "SELECT pg_switch_wal();" \
-c "SELECT * FROM entries;"

Sample output:

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -d guestbook \
-c "SELECT * FROM entries;" \
-c "SELECT pg_current_wal_lsn();" \
-c "UPDATE entries SET content='A';" \
-c "SELECT pg_switch_wal();" \
-c "SELECT * FROM entries;"
guestname | content | entryid

--------------+-------------------------------+---------
first guest | 2024-06-03 22:48:14.988387+00 | 4
second guest | 2024-06-03 22:48:21.762659+00 | 5
third guest | 2024-06-03 22:48:27.48224+00 | 6
fourth guest | PRIOR TO APP UPGRADE | 7
fifth guest | AFTER FAILED APP UPGRADE | 8
(5 rows)
pg_current_wal_lsn
--------------------
0/15000148
(1 row)
UPDATE 5
pg_switch_wal
---------------
0/150004B0
(1 row)
guestname | content | entryid

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

Unset

--------------+---------+---------
first guest | A | 4
second guest | A | 5
third guest | A | 6
fourth guest | A | 7
fifth guest | A | 8
(5 rows)

On your target AlloyDB Omni database cluster, follow all of the other steps from Cloning your
AlloyDB Omni database cluster, but stop before running the pgBackRest restore command.
Adjust the command to include --type=lsn and --target=<LSN value>.

For example:

docker exec CONTAINER_NAME pgbackrest \
--config-path=/var/lib/postgresql/backup \
--pg1-path=/var/lib/postgresql/data/data-RESTORED \
--stanza=omni \
--type=lsn \
--target=0/15000148 \
restore

Then continue with the remaining recovery steps as documented.

After restarting the AlloyDB Omni cluster, check that the recovery completed in the PostgreSQL
log file for your AlloyDB Omni cluster:

sudo docker logs CONTAINER_NAME |& grep -A4 'recovery stopping'

Sample output:

$ sudo docker logs CONTAINER_NAME |& grep -A4 'recovery stopping'

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/document/d/19BXkruGVBmbTUWWGUlEwkelRvrJFPDQP9kEPASw02io
https://docs.google.com/document/d/19BXkruGVBmbTUWWGUlEwkelRvrJFPDQP9kEPASw02io
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Unset

Unset

2024-06-04 18:38:12.804 UTC [16] LOG: [xlogrecovery.c:3255] recovery stopping
after WAL location (LSN) "0/15000148"
2024-06-04 18:38:12.805 UTC [16] LOG: [xlogrecovery.c:3411] pausing at the
end of recovery
2024-06-04 18:38:12.805 UTC [16] HINT: Execute pg_wal_replay_resume() to
promote.
2024-06-04 18:38:23.496 UTC [17] LOG: [g_memory.c:48] Memory worker finished
processing successfully

You can promote your database and verify that the data was restored to the correct time:

docker exec CONTAINER_NAME psql -h localhost -U postgres -c "SELECT
pg_wal_replay_resume();"

docker exec CONTAINER_NAME psql -h localhost -U postgres -d guestbook -c
"SELECT * FROM entries;"

Sample output:

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -c "SELECT
pg_wal_replay_resume();"

pg_wal_replay_resume
----------------------

(1 row)

$ docker exec CONTAINER_NAME psql -h localhost -U postgres -d guestbook -c
"SELECT * FROM entries;"

guestname | content | entryid
--------------+-------------------------------+---------
first guest | 2024-06-03 22:48:14.988387+00 | 4
second guest | 2024-06-03 22:48:21.762659+00 | 5
third guest | 2024-06-03 22:48:27.48224+00 | 6
fourth guest | PRIOR TO APP UPGRADE | 7
fifth guest | AFTER FAILED APP UPGRADE | 8

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


(5 rows)

High Availability and DR

What is database resilience?
Customers think of database resilience in terms of availability, time to restore service, and data
loss. Availability is usually measured in terms of uptime and expressed as the percentage of
time the database is available. For example, to achieve 99.99% availability, the database can’t
be down for more than 52.6 minutes of downtime per year, or 4.38 minutes per month. The time
to restore service after an outage is called recovery time objective, or RTO. The amount of
acceptable data loss due to an outage is called recovery point objective, or RPO, and is
expressed as the amount of time for which transactions are lost.

Customers often set an availability target, or service level objective (SLO), together with targets
for RTO and RPO. For example, for a given workload, the customer might set the SLO to
99.99%, and also require a RPO of 0–no data loss on any failure–and a RTO of 30 seconds. For
another workload, they might set the SLO to 99.9%, the RPO to 5 minutes, and the RTO to 10
minutes.

You can implement database resilience with database backups. AlloyDB Omni supports
backups using pgbackrest and also archives the database WAL (write ahead log) files to
minimize data loss. With this approach, if the primary database goes down, it can be restored
from a backup with an RPO of minutes, and a RTO of minutes to hours, depending on the size
of the database.

For stricter RPO and RTO requirements, you can set up AlloyDB Omni in a high availability
configuration using Patroni. In this architecture, there is a primary database and two standby or
replica databases. You can configure AlloyDB Omni to use standard PostgreSQL streaming
replication to ensure each transaction that is committed on the primary is synchronously
replicated to both standby databases. This provides a RPO of zero, and a RTO of less than sixty
seconds for most failure scenarios.

Synchronous replication can impact response time for transactions, and some customers
choose to risk a small amount of data loss, for example a RPO above zero, in exchange for
lower transactional latency, by implementing high availability with asynchronous replication
instead of synchronous. Due to the potential impact of synchronous replication on transaction
latency, high availability architectures are almost always implemented within a single data

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


center, or between data centers that are close together (tens of km apart / <10 milliseconds of
latency apart).

For disaster recovery, which is protection against the loss of a data center or a region where
there are multiple data centers close together, AlloyDB Omni can be configured with
asynchronous streaming replication from the primary region to a secondary region, typically
hundreds or thousands of km apart, or 10’s to 100’s of milliseconds apart. In this configuration,
the primary region is configured with synchronous streaming replication between the primary
and standby databases within the region, and asynchronous streaming replication is configured
from the primary region to one or more secondary regions. AlloyDB Omni can be configured in
the secondary region with multiple database instances to ensure that it is protected immediately
after a failover from the primary region.

The next section focuses on setting up a high availability solution for AlloyDB Omni using the
Patroni, etcd, and HAProxy open source tools. This architecture can be extended across
regions or geographically separated data centers to implement disaster recovery.

How high availability works
The specific techniques and tools used to implement high availability for databases can vary
depending on the database management system. The following are some of the techniques and
tools usually involved in implementing high availability for databases, which can vary depending
on the database management system:

● Redundancy: Replicating your database across multiple servers or geographical
regions provides failover options if a primary instance goes down.

● Automated Failover: Mechanism to detect failures and seamlessly switch to a healthy
replica, minimizing downtime. Queries are routed so that application requests reach the
new primary node.

● Data Continuity: Safeguards are implemented to protect data integrity during failures.
This includes replication techniques and data consistency checks.

● Clustering: Clustering involves grouping multiple database servers to work together as
a single system. In this way, all nodes in the cluster are active and handle requests
which provides load balancing and redundancy.

● Fallback: Methods to fall back to the original architecture using pre-failover primary and
replica nodes in their original capacities.

● Load Balancing: Distributing database requests across multiple instances improves
performance and handles increased traffic.

● Monitoring and Alerts: Monitoring tools detect issues like server failure, high latency,
resource exhaustion and trigger alerts, or automatic failover procedures.

● Backup and Restore: Backups can be used to restore databases to a previous state in
case of data corruption or catastrophic failure.

● Connection pooling (optional): Optimizes the performance and scalability of
applications that interact with your databases.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


High availability with Patroni, etcd and HAProxy
Patroni is an open-source cluster management tool for PostgreSQL databases designed to
manage and automate high availability for PostgreSQL clusters. Patroni uses various distributed
consensus systems like etcd, Consul, or Zookeeper to coordinate and manage the cluster state.
Some key features and components of Patroni include high availability with automatic failover,
leader election, replication, and recovery. Patroni is co-located with PostgreSQL server
instances as it directly manages and monitors their health and performs necessary operations
such as failovers and replication to maintain database cluster high availability and reliability.

Patroni uses a distributed consensus system to store metadata and manage the cluster. In this
guide we use a distributed configuration store (DCS) called etcd. One of the uses of etcd is to
store and retrieve distributed systems information such as configuration, health, and current
status, ensuring consistent configuration across all nodes.

HAProxy (High Availability Proxy) is an open-source software used for load balancing and
proxying TCP and HTTP-based applications, used to improve the performance and reliability of
web applications by distributing incoming requests across multiple servers. HAProxy offers load
balancing by distributing network traffic across multiple servers. HAProxy also maintains the
health state of the backend servers it connects to by performing health checks. If a server fails a
health check, HAProxy stops sending traffic to it until it passes the health checks again.

Before you begin

1. Create a Google Cloud project.

2. Make sure that billing is enabled for your Google Cloud project

3. Open Cloud Shell in the Cloud Console.

4. In Cloud Shell, clone the source repository and go to the directory for this tutorial:

git clone
https://github.com/GoogleCloudPlatform/cloud-solutions.git

Installation
In this guide we deploy a three node Patroni cluster with AlloyDB Omni and a three node cluster
etcd as the configuration store. In the front of the cluster, we use HAProxy in a managed
instance group for the floating IP address so that the failover is transparent to clients.

The initial configuration of the cluster:

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/shell/docs
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


The configuration after a zone outage and a failover:

.

If the number of clients that connect to the database becomes an issue and you have
performance issues due to the high number of simultaneous database connections, you might
add an additional connection pooling component like PgBouncer.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Deploy the solution

1. In Cloud Shell, go to the terraform directory of this tutorial:

cd
cloud-solutions/projects/alloydbomni-ha-patroni-etcd/terrafo
rm

2. Open the terraform.tfvars file. Set values for your project ID, region, zones and
some settings for your Patroni cluster like cluster name and postgres superuser and
replication usernames and passwords.

3. Run the Terraform script to create all resources.
The Terraform script creates and configures:

● Three nodes for your etcd cluster
● Three nodes for your Patroni cluster
● One node for HAProxy

terraform init && terraform apply

Install a client on a machine in the same network

You can install a client on a machine that has network connectivity to your database instances.
To do that, open terraform.tfvars file and make sure that the value of
provision_monitoring_machine is set to true:

provision_monitoring_machine = true

In this example, we use pgAdmin.

Synchronous and asynchronous replication considerations

In a Patroni-managed PostgreSQL cluster, replication can be configured in both synchronous
and asynchronous modes. By default, Patroni uses asynchronous streaming replication.
Although each replication type offers distinct advantages and trade-offs, some business use
cases might require synchronous replication.

Asynchronous replication allows transactions to be committed on the primary without waiting for
acknowledgments from standbys. The primary sends write-ahead log (WAL) records to
standbys, which apply them asynchronously. This asynchronous approach reduces write latency
and improves performance, but comes with the risk of data loss if the primary fails before the

Did you find this document helpful? Please send us your feedback.

https://www.pgadmin.org/
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


standby has caught up. Standbys might be behind the primary, leading to potential
inconsistencies during failover.

Synchronous replication in PostgreSQL ensures data consistency by waiting for transactions to
be written to both the primary and at least one synchronous standby before committing.
Synchronous replication guarantees that data is not lost in the event of a primary failure,
providing strong data durability and consistency. The primary waits for acknowledgments from
the synchronous standby, which can lead to higher latency and potentially lower throughput due
to the added round-trip time. This can reduce overall system throughput, especially under high
load.

The choice between synchronous and asynchronous replication in a Patroni cluster depends on
the specific requirements for data durability, consistency, and performance. Synchronous
replication is preferable in scenarios where data integrity and minimal data loss are critical, while
asynchronous replication suits environments where performance and lower latency are
prioritized. You can configure a mixed solution that involves having a three node cluster with a
synchronous standby in the same region but a different nearby zone or data center, and a
second asynchronous standby in a different region or a more distant data center to protect
against potential regional outages.

To make Patroni use only synchronous replication in your three nodes cluster, add configuration
items like synchronous_mode, synchronous_node_count, synchronous_commit and
synchronous_standby_names in the bootstrap section in your Patroni configuration files.
The bootstrap section of your yml configuration files looks similar to the following:

bootstrap:
dcs:
ttl: 30
loop_wait: 10
retry_timeout: 10
maximum_lag_on_failover: 1048576
synchronous_mode: true
synchronous_node_count: 2
postgresql:
use_pg_rewind: true
use_slots: true
parameters:
hot_standby: "on"
wal_keep_segments: 20
max_wal_senders: 8
max_replication_slots: 8
synchronous_commit: remote_apply
synchronous_standby_names: '*'

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


When synchronous_mode is turned on, Patroni uses synchronous replication between its
primary and the other replicas. The parameter synchronous_node_count is used by Patroni
to manage the number of synchronous standby databases. Patroni manages precise
number of synchronous standby databases based on parameter
synchronous_node_count and adjusts the state in the configuration store and in the
synchronous_standby_names as members join and leave. For more information about
synchronous replication, see the Replication modes section in Patroni’s documentation.

Test your high availability setup
Ensuring the reliability and quality of your high availability Patroni setup is crucial for maintaining
continuous database operations and minimizing downtime. This section provides a
comprehensive guide to testing your Patroni cluster, covering various failure scenarios,
replication consistency, and failover mechanisms. Follow the sections below to validate the
integrity and performance of your high availability Patroni configuration.

Test your Patroni setup

Connect to any of your patroni instances (patroni1, patroni2 or patroni3) and navigate to the
alloydb omni patroni folder:

cd /alloydbomni-patroni/

Run the docker compose logs command to inspect the patroni logs

docker-compose logs alloydbomni-patroni

The last entries should reflect information about the patroni node. You should see something
similar to the following:

alloydb-patroni        | 2024-06-12 15:10:29,020 INFO: no action. I am
(patroni1), the leader with the lock
alloydb-patroni        | 2024-06-12 15:10:39,010 INFO: no action. I am
(patroni1), the leader with the lock
alloydb-patroni        | 2024-06-12 15:10:49,007 INFO: no action. I am
(patroni1), the leader with the lock

Connect to any instance running linux that has network connectivity to your primary patroni
instance (patroni1) and get information about the patroni-1 instance:

curl -s http://patroni1:8008/patroni | jq .

Did you find this document helpful? Please send us your feedback.

https://patroni.readthedocs.io/en/latest/replication_modes.html
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


You should see something similar to the following displayed:

{

"state": "running",

"postmaster_start_time": "2024-05-16 14:12:30.031673+00:00",

"role": "master",

"server_version": 150005,

"xlog": {

"location": 83886408

},

"timeline": 1,

"replication": [

{

"usename": "alloydbreplica",

"application_name": "patroni2",

"client_addr": "10.172.0.40",

"state": "streaming",

"sync_state": "async",

"sync_priority": 0

},

{

"usename": "alloydbreplica",

"application_name": "patroni3",

"client_addr": "10.172.0.41",

"state": "streaming",

"sync_state": "async",

"sync_priority": 0

}

],

"dcs_last_seen": 1715870011,

"database_system_identifier": "7369600155531440151",

"patroni": {

"version": "3.3.0",

"scope": "my-patroni-cluster",

"name": "patroni1"

}

}

Note: You might need to install the jq tool by running sudo apt-get install jq -y

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Calling the Patroni HTTP API endpoint on a Patroni node exposes various details about the
state and configuration of that particular PostgreSQL instance managed by Patroni, including
cluster state information, timeline, WAL information, and health checks indicating whether the
nodes and cluster are up and running correctly.

Test your HAProxy setup
On a machine with a browser and network connectivity to your HAProxy node, go to the
following address:

http://haproxy:7000

You should see something resembling the below screenshot:

In the HAProxy dashboard you can see the health status and latency of your primary Patroni,
patroni1, and of the two replicas, patroni2 and patroni3.

If you connect to the HAProxy server from your pgAdmin client, you can perform some queries
to check the replication stats in your cluster.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Connect to your HAProxy-node and run the following query:

SELECT
pid, usename, application_name, client_addr, state,

sync_state
FROM

pg_stat_replication;

You should see something similar to the following:

Test the automatic failover operation
In this section, in your three node cluster, we simulate an outage on the primary node by
stopping the attached-running Patroni container. You can either stop the Patroni service on the
primary node to simulate an outage or enforce some firewall rules to stop communication to that
node.

1. Navigate to the alloydb omni patroni folder:

cd /alloydbomni-patroni/

2. Run docker compose down command to stop the running container:

docker compose down

You should see something similar to this:

root@patroni1:/alloydbomni-patroni# docker compose down
[+] Running 2/2
✔ Container alloydb-patroni            Removed
✔ Network alloydbomni-patroni_default  Removed

3. Refresh the HAProxy dashboard and see how failover takes place:

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


The patroni3 instance became the new primary, and patroni2 is the only remaining replica. The
previous primary, patroni1, is down and Layer 4 checks fail for it.

Patroni performs and manages the failover through a combination of monitoring, consensus,
and automated orchestration. As soon as the primary node fails to renew its lease within a
specified timeout, or if it reports a failure, the other nodes in the cluster recognize this condition
through the consensus system. The remaining nodes coordinate to select the most suitable
replica to promote as the new primary. Once a candidate replica is selected, Patroni promotes
this node to primary by applying the necessary changes, such as updating the PostgreSQL
configuration and replaying any outstanding WAL records. Then, the new primary node updates
the consensus system with its status and the other replicas reconfigure themselves to follow the
new primary, including switching their replication source and potentially catching up with any
new transactions. HAProxy detects the new primary and redirects client connections
accordingly, ensuring minimal disruption.

If you have access to a pgAdmin client, connect to your HAProxy-node and check the
replication stats in your cluster after failover:

SELECT pid, usename, application_name, client_addr, state,
sync_state

FROM

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


pg_stat_replication;

You should see something similar:

patroni2 is now the only replica remaining and following the new primary patroni3.

Your three node cluster can survive one more outage. If you stop the current primary node
(patroni3), another failover takes place:

Fallback considerations
Fallback is the process to reinstate the former source node after a failover has occurred.
Automatic fallback is generally not recommended in a high availability database cluster because
of several critical concerns, like incomplete recovery, risk of split-brain scenarios, and replication
lag.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


In your Patroni cluster, if you bring up the two nodes that you simulated an outage with, they will
rejoin the cluster as standby replicas:

Now patroni1 and patroni3 are replicating from the current primary patroni2.

If you want to manually fall back to your initial primary, you can do that by using the patronictl
command-line interface. By opting for manual fallback, you can ensure a more reliable,
consistent, and thoroughly verified recovery process, maintaining the integrity and availability of
your database systems.

Did you find this document helpful? Please send us your feedback.

https://patroni.readthedocs.io/en/latest/patronictl.html
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Security and Compliance

Manage AlloyDB Omni database roles

About user roles in AlloyDB Omni

An AlloyDB database uses the standard PostgreSQL concept of roles. A role can act as a
database user, a group of users, or both.

A user role has the LOGIN privilege that lets users log into the system. A group role has
member roles with various privileges, which you can grant to or revoke from all members at
once

AlloyDB’s predefined PostgreSQL roles
PostgreSQL has a set of predefined roles with various privileges. AlloyDB Omni adds several
user and group roles to this set of PostgreSQL's predefined roles.

The following table lists the PostgreSQL roles that AlloyDB predefines:

Role name Privileges

alloydbadmin SUPERUSER, CREATEROLE, CREATEDB, REPLICATION, BYPASSRLS

alloydbagent -

alloydbexport -

alloydbiamgroupuser -

alloydbiamuser -

alloydbimportexport -

alloydbmetadata LOGIN

alloydbobservability -

alloydbreplica -

alloydbsuperuser -

postgres SUPERUSER, CREATEROLE, CREATEDB, BYPASSRLS, and LOGIN

The `alloydbsuperuser` role is a predefined role to initially set up the database system and
perform other superuser tasks. This role has the following privileges:

● Create extensions that require superuser privileges

Did you find this document helpful? Please send us your feedback.

https://www.postgresql.org/docs/current/database-roles.html
https://www.postgresql.org/docs/14/predefined-roles.html
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


● Create event triggers
● Create replication users
● Create replication publications and subscriptions

The other users are simply reserved names that are unused.

Omni users have the option to modify these predefined PostgreSQL roles if needed by following
the Postgres documentation.

Data Migration
The most appropriate approach for migrating from any source database to AlloyDB Omni
depends on the nature of the source system and the downtime available to switch from the
source environment to the destination AlloyDB Omni environment.

PostgreSQL to AlloyDB Omni
In the simplest migration case, su�cient downtime is available to move the source database to
the destination using pg_dump and pg_restore. Migrations that can be completed within the
available downtime are simpler than ones that cannot because migrations that cannot require
multiple transfers of data, which might involve multiple tools and data movement methods.

As the volume of data and other forms of complexity increase, use of pgloader might become
more appropriate.

For migrations where downtime must be minimized, you can use PostgreSQL logical replication
for the requirement for some form of replication from source to destination.

Oracle to AlloyDB Omni
In the simplest migration case, su�cient downtime is available to move the volume of data in
Oracle and all Oracle resident application logic can be converted to PostgreSQL. In this
situation the open source tool Ora2Pg is recommended for schema conversion and data
movement. Ora2Pg may also be appropriate for the code conversion.

With the increase in complexity of application logic in the source Oracle system, volume of
data to migrate, and rate of new data creation, it's likely that other tools might be required to
migrate the application logic and to switch from source to destination in an available downtime
window.

Did you find this document helpful? Please send us your feedback.

https://www.postgresql.org/docs/14/user-manag.html
https://www.postgresql.org/docs/current/app-pgdump.html
https://www.postgresql.org/docs/current/app-pgrestore.html
https://pgloader.readthedocs.io/en/latest/
https://www.postgresql.org/docs/16/logical-replication.html
https://ora2pg.darold.net/
https://ora2pg.darold.net/
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


The Database Migration Service can be used for code and schema conversion, while the data
migration should be done by a di�erent tool, Equalum, as Database Migration Service doesn’t
support AlloyDB Omni. Database Migration Service can be used for code and schema
conversion with another tool such as Ora2Pg, and, where required, a CDC (change data
capture) tool.

Observability
Since AlloyDB Omni is an edge installation, generally the same techniques used to observe
other edge type installations of PostgreSQL apply.

Observability Scripts
To tell how your AlloyDB Omni database is performing you can either use scripts to query the
system tables or use observability tools like the Prometheus Exporter for Postgres which is
detailed in the observability tools section.  If you want to utilize scripts, the following script is a
good starting point for understanding how your installation is performing:

/* To determine the state of connected processes and any current wait events */

SELECT

pid,

datname,

age(backend_xid) AS age_in_xids,

now() - xact_start AS xact_age,

now() - query_start AS query_age,

state,

wait_event_type,

wait_event,

query_id,

query

FROM

pg_stat_activity

WHERE

state != 'idle'

AND pid <> pg_backend_pid()

ORDER BY

4 DESC

LIMIT 10;

/* Large tables size with #of seq / index scan */

SELECT

oid,

oid::regclass table_name,

Did you find this document helpful? Please send us your feedback.

https://ora2pg.darold.net/
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


pg_size_pretty(pg_relation_size(oid)),

relpages,

s.seq_scan,

s.idx_scan

FROM

pg_class,

pg_stat_user_tables s

WHERE

s.relid = oid

AND oid > 16383

AND relpages > 100

AND relkind = 'r'

ORDER BY

relpages DESC

LIMIT 20;

/* Top Sequential scans: */

SELECT

relid,

relname,

seq_scan,

pg_size_pretty(pg_relation_size(relid))

FROM

pg_stat_user_tables

ORDER BY

seq_scan DESC

LIMIT 15;

/* Top Index scans: */

SELECT

relid,

relid::regclass table_name,

idx_scan,

pg_size_pretty(pg_relation_size(relid))

FROM

pg_stat_user_tables

WHERE

idx_scan > 10

ORDER BY

idx_scan DESC

LIMIT 15;

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


/* Check on Vacuum Progress */

SELECT

p.pid,

now() - a.xact_start AS duration,

coalesce(wait_event_type ||'.'|| wait_event, 'f') AS waiting,

CASE

WHEN a.query ~*'^autovacuum.*to prevent wraparound' THEN 'wraparound'

WHEN a.query ~*'^vacuum' THEN 'user'

ELSE

'regular'

END AS mode,

p.datname AS database,

p.relid::regclass AS table,

p.phase,

pg_size_pretty(p.heap_blks_total * current_setting('block_size')::int) AS table_size,

pg_size_pretty(pg_total_relation_size(relid)) AS total_size,

pg_size_pretty(p.heap_blks_scanned * current_setting('block_size')::int) AS scanned,

pg_size_pretty(p.heap_blks_vacuumed * current_setting('block_size')::int) AS vacuumed,

round(100.0 * p.heap_blks_scanned / p.heap_blks_total, 1) AS scanned_pct,

round(100.0 * p.heap_blks_vacuumed / p.heap_blks_total, 1) AS vacuumed_pct,

p.index_vacuum_count,

round(100.0 * p.num_dead_tuples / p.max_dead_tuples,1) AS dead_pct

FROM pg_stat_progress_vacuum p

JOIN pg_stat_activity a using (pid)

ORDER BY now() - a.xact_start DESC;

/* Is a query running in parallel? */

SELECT

query,

leader_pid,

array_agg(pid) FILTER (WHERE leader_pid != pid) AS members

FROM

pg_stat_activity

WHERE

leader_pid IS NOT NULL

GROUP BY

query,

leader_pid;

/* Blocking Lock SQL */

SELECT blocked_locks.pid     AS blocked_pid,

blocked_activity.usename  AS blocked_user,

blocking_locks.pid     AS blocking_pid,

blocking_activity.usename AS blocking_user,

blocked_activity.query    AS blocked_statement,

blocked_activity.wait_event AS blocked_wait_event,

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


blocking_activity.wait_event AS blocking_wait_event,

blocking_activity.query   AS current_statement_in_blocking_process

FROM  pg_catalog.pg_locks         blocked_locks

JOIN pg_catalog.pg_stat_activity blocked_activity  ON blocked_activity.pid =

blocked_locks.pid

JOIN pg_catalog.pg_locks         blocking_locks

ON blocking_locks.locktype = blocked_locks.locktype

AND blocking_locks.database IS NOT DISTINCT FROM blocked_locks.database

AND blocking_locks.relation IS NOT DISTINCT FROM blocked_locks.relation

AND blocking_locks.page IS NOT DISTINCT FROM blocked_locks.page

AND blocking_locks.tuple IS NOT DISTINCT FROM blocked_locks.tuple

AND blocking_locks.virtualxid IS NOT DISTINCT FROM blocked_locks.virtualxid

AND blocking_locks.transactionid IS NOT DISTINCT FROM blocked_locks.transactionid

AND blocking_locks.classid IS NOT DISTINCT FROM blocked_locks.classid

AND blocking_locks.objid IS NOT DISTINCT FROM blocked_locks.objid

AND blocking_locks.objsubid IS NOT DISTINCT FROM blocked_locks.objsubid

AND blocking_locks.pid != blocked_locks.pid

JOIN pg_catalog.pg_stat_activity blocking_activity ON blocking_activity.pid =

blocking_locks.pid

WHERE NOT blocked_locks.granted;

/* Check for the 10 Longest Running Transactions */

SELECT

pid,

age(backend_xid) AS age_in_xids,

now() - xact_start AS xact_age,

now() - query_start AS query_age,

state,

query

FROM

pg_stat_activity

WHERE

state != 'idle'

ORDER BY

2 DESC

LIMIT 10;

To determine if your work_mem / temp_buffers are sized correctly for your needs, the
postgres.log or pg_stat_database.  Using pg_stat_database, execute the following
query and if there is any growth in temp_files or temp_bytes between executions, then
tuning is likely necessary for either work_mem or temp_buffers.

SELECT

datname,

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


temp_files,

temp_bytes

FROM

pg_stat_database;

From within the postgres.log �le if temp �les were being used, the following line is present:

LOG:  [fd.c:1772]  temporary file: path "base/pgsql_tmp/pgsql_tmp4640.1", size 139264

It is important to realize that the goal is to minimize the creation of temporary files, not
completely prevent them from happening. This is because setting both work_mem and
temp_buffers is a balance between available memory on the host and the number of
connections that require the memory. Setting these parameters correctly required understanding
about each individual workload.

Observability Tools

To get a complete view of the system, we recommend products like Datadog which are already
integrated with PostgreSQL and track a large number of data points. Postgres Exporter,
Prometheus, and Grafana can also be used to construct your own dashboards.

Using Grafana, Prometheus, and Postgres Exporter
Prometheus is a standard logging format that dashboarding tools like Grafana can ingest to
create trending graphs and subsequent alerting mechanisms.

Installing Postgres Exporter
Open source Postgres Exporter is a standard mechanism to export observability queries into a
format that Prometheus can read.  The exporter comes with many standard queries already
built in, however you can add additional queries and rules depending on your needs.
Additional security options such as SSL and user authentication options can be changed to �t
the installation needs.  For this example the basic options are used.

To install the exporter, prepare the so�ware location and copy the binary to a suitable location:

/* Create a software staging area */

sudo mkdir /opt/postgres_exporter

sudo chown : /opt/postgres_exporter

Did you find this document helpful? Please send us your feedback.

your linux user your linux user

https://github.com/prometheus-community/postgres_exporter/
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


cd /opt/postgres_exporter

wget

https://github.com/prometheus-community/postgres_exporter/releases/download/v0.15.0/postgres_ex

porter-0.15.0.linux-amd64.tar.gz

tar -xzvf postgres_exporter-0.15.0.linux-amd64.tar.gz

cd postgres_exporter-0.15.0.linux-amd64

sudo cp postgres_exporter /usr/local/bin

Create an appropriate ENV �le for the exporter:

cd /opt/postgres_exporter

sudo vi postgres_exporter.env

# Inside the postgres_exporter.env put the following:

# to Monitor one single database

DATA_SOURCE_NAME="postgresql:// : @ : /

?sslmode=disable"

# or you can use the following to monitor all the databases available on localhost

DATA_SOURCE_NAME="postgresql:// : @ :

/?sslmode=disable"

Create a system.d service so that the exporter will survive the reboot:

/* Add the contents to the following file: /etc/systemd/system/postgres_exporter.service */

[Unit]

Description=Prometheus exporter for Postgresql

Wants=network-online.target

After=network-online.target

[Service]

User=postgres

Group=postgres

WorkingDirectory=/opt/postgres_exporter

EnvironmentFile=/opt/postgres_exporter/postgres_exporter.env

ExecStart=/usr/local/bin/postgres_exporter --web.listen-address=:

--web.telemetry-path=/metrics

Restart=always

[Install]

WantedBy=multi-user.target

Did you find this document helpful? Please send us your feedback.

username password postgres_ip_address port database-name

username password postgres_ip_address port

postgres_exporter port

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Reload and start the Postgres Exporter Service:

/* Reload Systemd */

sudo systemctl daemon-reload

/* Enable and Start Service */

sudo systemctl start postgres_exporter

sudo systemctl enable postgres_exporter

sudo systemctl status postgres_exporter

Installing Prometheus
Prometheus is required to query the exporter and return the observability data into a readable
format.

/* Create prometheus user */

sudo groupadd --system prometheus

sudo useradd -s /sbin/nologin --system -g prometheus prometheus

/* Create Directories for Prometheus */

sudo mkdir /etc/prometheus

sudo mkdir /var/lib/prometheus

/* Download the latest Prometheus */

wget

https://github.com/prometheus/prometheus/releases/download/v2.52.0/prometheus-2.52.0.linux-amd6

4.tar.gz

/* Untar and set ownership to Prometheus User */

sudo tar xvf prometheus*.tar.gz

cd prometheus*/

sudo mv prometheus /usr/local/bin

sudo mv promtool /usr/local/bin

sudo chown prometheus:prometheus /usr/local/bin/prometheus

sudo chown prometheus:prometheus /usr/local/bin/promtool

/* Move the Configuration Files & Set Owner */

sudo mv consoles /etc/prometheus

sudo mv console_libraries /etc/prometheus

sudo mv prometheus.yml /etc/prometheus

sudo chown prometheus:prometheus /etc/prometheus

sudo chown prometheus:prometheus /etc/prometheus/*

sudo chown -R prometheus:prometheus /etc/prometheus/consoles

sudo chown -R prometheus:prometheus /etc/prometheus/console_libraries

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


sudo chown -R prometheus:prometheus /var/lib/prometheus

Create the Prometheus con�guration �les:

/* Edit the prometheus parameter file */

sudo vi /etc/prometheus/prometheus.yml

/* Basic Scrape Config */

global:

scrape_interval: 15s

scrape_configs:

- job_name: postgres

static_configs:

- targets: [' :9187']

Create a system.d service so that Prometheus will survive reboot:

/* Add the contents to the following file: /etc/systemd/system/prometheus.service */

[Unit]

Description=Prometheus

Wants=network-online.target

After=network-online.target

[Service]

User=prometheus

Group=prometheus

Type=simple

ExecStart=/usr/local/bin/prometheus \

--config.file /etc/prometheus/prometheus.yml \

--storage.tsdb.path /var/lib/prometheus/ \

--web.console.templates=/etc/prometheus/consoles \

--web.console.libraries=/etc/prometheus/console_libraries

[Install]

WantedBy=multi-user.target

/* Reload Systemd */

sudo systemctl daemon-reload

/* Start Prometheus Service */

sudo systemctl enable prometheus

Did you find this document helpful? Please send us your feedback.

postgres_exporter_machine_IP_address

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


sudo systemctl start prometheus

sudo systemctl status prometheus

Reload and start the Prometheus service:

/* Reload Systemd */

sudo systemctl daemon-reload

/* Start Prometheus Service */

sudo systemctl enable prometheus

sudo systemctl start prometheus

sudo systemctl status prometheus

Installing Grafana
Grafana is a dashboarding tool that exposes Prometheus metrics to an end user through a
dashboard.  Multiple standard dashboards are available for the Postgres Exporter and this
observability example leverages those available dashboards. Grafana is available through
normal apt and yum repositories and we leverage those to install this product.

Install on Ubuntu or Debian:

/* Install from apt for Ubuntu */

sudo apt-get update

sudo apt-get install grafana

Install on RHEL, CentOS, or Rocky Linux:

/* Import the GPG Key */

wget -q -O gpg.key https://rpm.grafana.com/gpg.key

sudo rpm --import gpg.key

/* Create /etc/yum.repos.d/grafana.repo with the following content: */

[grafana]

name=grafana

baseurl=https://rpm.grafana.com

repo_gpgcheck=1

enabled=1

gpgcheck=1

gpgkey=https://rpm.grafana.com/gpg.key

sslverify=1

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


sslcacert=/etc/pki/tls/certs/ca-bundle.crt

/* Install Open Source Grafana */

sudo dnf install grafana

Reload and start the service:

/* Reload Systemd */

sudo systemctl daemon-reload

/* Start Grafana Service */

sudo systemctl enable grafana-server

sudo systemctl start grafana-server

sudo systemctl status grafana-server

Standard Addresses for Postgres Exporter, Prometheus, and Grafana

/* Prometheus Address */

http:// :9090

/* Postgres Exporter Address */

http:// :9187/metrics

/* Grafana Address */

http:// :3000

Load a Dashboard to Grafana
You can �nd general instructions on how to con�gure and operate open source Grafana on the
Set up Grafana page.

While there are many public dashboards available, we use the following dashboard:

h�ps://grafana.com/grafana/dashboards/13494-postgresql-statistics/

Did you find this document helpful? Please send us your feedback.

prometheus-host-ip

postgres_exporter-host-ip

grafana-host-ip

https://grafana.com/docs/grafana/latest/setup-grafana/
https://grafana.com/grafana/dashboards/13494-postgresql-statistics/
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Create a data source

1. Navigate and log into the Grafana console using the Grafana address above. Both the
default username and password are admin. Change this password.

2. If the prometheus datasource has not yet been set up, go to Home > Data sources

3. Click Add new datasource and select Prometheus.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


4. Enter the ip address and port of the prometheus server created in the previous step
into the Prometheus server URL �eld.

For a basic con�guration, leave everything as the defaults except for:
● Prometheus type: Select Prometheus
● Prometheus version: Select > 2.5.x

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


5. Click Save & test.

Create a dashboard

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


1. Go to Home > Dashboards.

2. Click New, and select New dashboard.

3. Click Import dashboard.

4. Import the dashboard using the following URL:
h�ps://grafana.com/grafana/dashboards/13494-postgresql-statist

5. Click Load.

Did you find this document helpful? Please send us your feedback.

https://grafana.com/grafana/dashboards/13494-postgresql-statistics/
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


6. Update the name of the dashboard
7. Enter the data source into the Prometheus �eld, and click Import.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


A�er the import is complete, the following monitoring dashboard is available:

Perfsnap
Perfsnap is a tool within AlloyDB Omni which can be used to snapshot two time periods in
order to obtain detailed observability information during the the two time periods.  This can be
especially helpful when lots of di�erent data is needed to diagnose a speci�c time period.
Proceed to the following Perfsnap section for additional details.

Recommended extensions for observability
Any extension can be added to AlloyDB Omni using the instructions in this guide.

In terms of observability, the following extensions are recommended to be installed:
● pg_stat_statements (included)
● pgSentinel (h�ps://github.com/pgsentinel/pgsentinel) (not included)

Columnar engine observability
The columnar engine is best observed using standard scripts which can be executed from the
psql command line or integrated into the dashboard of your choice. Standard observability
scripts are detailed as follows:

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/document/d/1LIqxZFFdy4xqOQjqJaQJfAES1ZNui7yaNaE3XQLxnWM/edit?resourcekey=0-L68gendsIrC0i5go5C7j3g&tab=t.0#bookmark=id.6z34sdim2v2n
https://github.com/pgsentinel/pgsentinel
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


General columnar engine observability scripts:

/* determine columnar engine settings */

SELECT

name,

setting,

boot_val,

reset_val

FROM

pg_settings

WHERE

name LIKE '%google_columnar_engine%'

ORDER BY

1;

/* To view the list of recommended column detail: */

SELECT

crc.schema_name AS schema_name,

crc.relation_name AS table_name,

pi.inhparent::regclass,

crc.column_name,

crc.column_format,

crc.compression_level,

crc.estimated_size_in_bytes

FROM g_columnar_recommended_columns crc

JOIN pg_stat_all_tables ps

ON ps.schemaname::text = crc.schema_name

AND ps.relname::text = crc.relation_name

JOIN pg_class pc

ON ps.relid = pc.oid

LEFT JOIN pg_catalog.pg_inherits pi

ON ps.relid = pi.inhrelid

ORDER BY 1,2,4 NULLS LAST;

/* List of items in the column store */

SELECT

database_name,

schema_name,

relation_name,

column_name,

size_in_bytes,

last_accessed_time

FROM

g_columnar_columns;

SELECT

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


*

FROM

g_columnar_relations

ORDER BY

relation_name;

/* To see current status of items in columnstore */

SELECT

schema_name,

relation_name,

status,

swap_status,

sum(end_block - start_block) ttl_block,

sum(invalid_block_count) invalid_block,

round(100 * sum(invalid_block_count) / sum(end_block - start_block), 1) AS

invalid_block_perc,

pg_size_pretty(sum(size)) ttl_size,

pg_size_pretty(sum(cached_size_bytes)) ttl_cached_size

FROM

g_columnar_units

WHERE

g_columnar_units.database_name = current_database()

GROUP BY

schema_name,

relation_name,

status,

swap_status;

/* Check utilization of columnar memory */

select memory_name ,

memory_total/1024/1024 memory_total_MB,

memory_available/1024/1024 memory_available_MB ,

memory_available_percentage

from g_columnar_memory_usage;

/* To see Columnar engine column Swap-out */

SELECT

pg_size_pretty(memory_total) AS cc_allocated,

pg_size_pretty(memory_total - memory_available) AS cc_consumed,

pg_size_pretty(memory_available) cc_available,

google_columnar_engine_local_storage_used () AS cc_local_storage_used_mb,

google_columnar_engine_local_storage_available () AS cc_local_storage_avail_mb,

CASE WHEN google_columnar_engine_local_storage_used () IS NOT NULL THEN

'Swapped-out Column(s)'

ELSE

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


NULL

END AS "SwapOut",

(

SELECT

CONCAT_WS('-', STRING_AGG(DISTINCT g_columnar_units.relation_name, '/'), STATUS,

swap_status)

FROM

g_columnar_units

GROUP BY

status,

swap_status) AS current_obj

FROM

g_columnar_memory_usage

WHERE

memory_name = 'main_pool';

Index advisor
An index advisor is included with AlloyDB Omni. This advisor keeps track of the queries being
executed and suggests indexes that the query might bene�t from. You can �nd more
information about the index advisor on the Index advisor overview page.

Manage your AlloyDB Omni configuration

Default extensions to use
By design, a minimal set of extensions are loaded to One-Omni.  For maximum observability,
create the following extension in each user database:

CREATE EXTENSION pg_stat_statements;

Log location
The logs for the container, including the postgres log, can be viewed by executing the
following command “docker logs [omni container name]”

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/index-advisor-overview
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI


Add extensions to AlloyDB Omni
Should your installation require additional extensions, they can be added to AlloyDB Omni.
The base extensions included with the product are listed here:

h�ps://cloud.google.com/alloydb/docs/reference/extensions

Each extension requires di�erent steps to download / install and the existing process will not
work with One-Omni.

Did you find this document helpful? Please send us your feedback.

https://cloud.google.com/alloydb/docs/reference/extensions
https://docs.google.com/forms/d/1f7WgihfskcaJdAjKRWoJrd_JWfMAnHzOFuU6Mf8IJDI

